LPP EUV Source Production for HVM

David C. Brandt*, Igor V. Fomenkov, Michael J. Lercel, Bruno La Fontaine David W. Myers, Daniel J. Brown

October 17, 2011

Contents

- Introduction
- HVM I Performance
 - Power and Dose Stability
 - Collector Lifetime
- HVM I Roadmap and Upgrades
- HVM II Development
 - Architecture and Layout
- Product Roadmap and Summary
 - HVM II and beyond

Introduction CYMER 2011 International Symposium on EUVL – Miami – October 17, 2011

Progress and Status Summary

- Total of eight HVM I sources built and operational
 - Four sources installed and exposing wafers at customer sites
 - Installation of a fifth source at user site is in process
 - Field teams in place to support 24x7 operation globally
 - One HVM I source installed at ASML for NXE:3100 scanner development
 - Two remain in San Diego for upgrade development and reliability enhancements
 - Availability of sources in field approximately 50% (SEMI E10 definition)
 - Power upgrade to 8W released and in process of being installed at Fabs
- HVM I Power Upgrades
 - Demonstrated 35W expose power at high duty cycle on HVM I source
 - Demonstrated 100W expose power at low duty cycle with pre-pulse on LT1
- HVM II source hardware program
 - Program schedule on track for February first light
 - 28kW CO₂ laser power demonstrated to support NXE:3300 initial power target

Cymer EUV Operations in San Diego

Corporate Headquarters (CSD4 – 130,000 ft²)

- EUV Operations
 - R&D (6000 ft²)
 - Marketing and Management

Manufacturing Facility (CSD6 – 265,000 ft²)

- EUV Operations
 - Engineering and Manufacturing (32,000 ft²)
 - Capacity for 1 source per month by mid 2012
 - Service and support

HVM I Laser Produced Plasma EUV Source

Schematic Layout Shown for Single Floor

HVM I Source Vessel Fully Populated

HVM I source in the cleanroom at ASML

~2m from floor

Cymer LPP Source Integrated into ASML NXE:3100

Supporting 7 days/wk x 24 hrs/day operations in all locations

Imaging Performance with LPP Sources on NXE:3100

Enabling EUV Lithography

19 nm dense lines

27 nm Gate Layer Flash

Flash staggered contact layer Bitline pitch = 44 nm (1:1.2)CH pitch = 74.4 nm

0.038µm2 bit cell-size,

hp 30/32 nm

SRAM metal-1

30 nm Brickwall DRAM

0.038µm2 bit cell-size, hp 30/32 nm

Courtesy of ASML

Worldwide Cymer LPP Source Installed Base

Location	Status	Description				
HVM I Sources						
Chipmaker	Device development	Installed and operational, since Dec 2010				
Chipmaker	Device development	Installed and operational, since March 11'				
Chipmaker	Qualification test	Shipped to ASML in August 10', user installation in process				
Chipmaker	Qualification test	Direct ship to end user from Cymer				
Chipmaker	Installation	Shipped to ASML in April 10', user installation in process				
ASML	Installation	To be used for scanner development at ASML				
Cymer Internal	Upgrade 2 (Pre-pulse)	Pre-pulse hardware installed and testing is underway, June '11 demonstration of 30W 80% duty cycle and 25W/100% duty cycle				
Cymer Internal	Upgrade 0.5 and 1.0, and collector life-testing	Demonstrated 11W average expose power >100 hour Improved coating lifetime testing				
HVM II Sources						
Cymer→ASML	Build process started	Early source to support 3300 program				
Cymer→ASML	Build process started	Early source to support 3300 program				
Cymer Internal	Procurement	RD&E source for 3300 development				
Cymer Internal	Procurement	RD&E source for 3300 development				
Cymer→ASML	Procurement	First full 3300 integration source				
Cymer→ASML	Procurement	3300 integration source				
Additional HVM II sources planned committed for delivery 2012-2013						

HVM I Performance

Current HVM I Performance

- 8W average exposure power at 60% duty cycle is qualified by Cymer and released to the field for upgrade
- <1.0% dose stability on >90% of fields, exceeded interim target
- Automation is complete for dose control, and plasma position control in three dimensions (x, y, z)
- Machine software is complete to eliminate operator intervention (expect an increase in availability of >10%)
- ~50% Availability (SEMI E10 Definition)
 - Other 50% of time is used for maintenance, primarily on two modules; Droplet Generator and Collector

8W Average Exposure Power Demonstration over 8 hours on HVM I Source at 60% Duty Cycle

HVM I Source Availability Year-to-Date

	1Q2011	2Q2011	3Q2011	4Q2011
Target	35%	40%	53%	61%
All Sources	48%	55%	52%	
In Field Only	51%	50%	48%	

Weekly Availability Time for All Sources

HVM I Roadmap and Upgrades

HVM I Source – Near Term Power Upgrade Roadmap

Upgrade 1: ~15W Average Exposure Power at 90% Duty Cycle Dose Stability by Die over Five Wafers

Upgrade 1: ~19W Average Exposure Power at 90% Duty Cycle Dose Stability by Die over Five Wafers

Upgrade 2a: ~35W Average Exposure Power at High Duty Cycle on an HVM I Source

- 80% Duty Cycle
- <±0.5% Dose Stability
- Feasibility at low duty cycle (LT1) supports 50W target
 - Laser upgrade to LT1 configuration ongoing

>100W Power Demonstration at Low Duty Cycle with Prepulse on LT1

<u>LT1</u>

- >100W Calculated Exposure Power
- ~20kW CO₂ Laser Power
- Low duty cycle / no collector

<u>HVM I</u>

 Prepulse hardware is installed on an internal source and ready to be tested at high duty cycle

Collector Lifetime Significantly Improved since SPIE (> 16 Billion Pulses Lifetime in the Field)

- Improvements confirmed at Cymer San Diego (CSD) and in the field
- Solutions in place to reach 30 billion pulses using improved coatings and gas flows

Collector Lifetime – Continuous Improvement Roadmap

Droplet Generator: Long Term Droplet Stability over 21 days

- Standard deviation of the position stability of tin droplets measured over a period of 21 days
- Droplet generator was stopped for short time and refilled with tin twice during this test

1st day

10th day

21st day

<u>Droplet Generator</u> – Continuous Improvement Roadmap

HVM II Development

HVM II Source: Changes from HVM I

- Higher EUV Power required
- Increased source orientation angle
 - Increases scanner optical throughput
- Higher NA collector
 - Smaller source vessel
- Designed for improved serviceability
- HVM II Source architecture and layout completed, first integration begins in Q1 2012

Product Roadmap and Summary

LPP EUV Source Product Roadmap

Summary

- Increased level of investment and commitment for development of LPP technology and source production for the semiconductor industry
- Eight HVM I sources built, six shipped to customers, two sources being used in San Diego for EUV power upgrades and collector protection testing
- HVM I source EUV power (clean average power) qualified at ~8W with <1.0% dose stability
- 20W clean average exposure power will be available by year end for chipmaker installations
- Exposure power as demonstrated on LT1 is >100W, validation on a HVM I source is in process to qualify upgrade 2b, with plan for chipmaker upgrade by Q2 2012
- HVM II source architecture for ASML NXE:3300B scanners is complete, modules are on order and first integration is planned in Q1 2012

CYMER

Leading the Light Generation.